

TECHNICAL DATA SHEET

CyFlow™ DDIT4L PE Anti-Hu; Clone DDIT-03

Sysmex Partec GmbH Arndtstraße 11 a-b 02826 Görlitz Germany Tel.: +49 3581 8746 0

E-mail: info@sysmex-partec.com www.sysmex-partec.com Distributed in the U.S.A. and Canada by: **Sysmex America, Inc.** 577 Aptakisic Road Lincolnshire, IL 60069, U.S.A. Tel.: 1-888-879-7639 or 1-847-367-3503 E-mail: cytometry@sysmex.com

https://us.sysmex-flowcytometry.com/

For Research Use Only.

Not for use in diagnostic or therapeutic procedures.

Specifications

Antigen	DDIT4L		
Alternative Names	DNA-damage-inducible transcript 4 like, RTP801L, REDD-2		
Clone	DDIT-03		
Clonality	monoclonal		
Format	PE		
Host / Isotype	Mouse / IgG1		
Species Reactivity	Human		
Negative Species Reactivity	_		
Quantity [Concentration]	0.1 mg [0.1 mg/mL]		
Immunogen	N-terminal recombinant fragment of human DDIT4L (amino acids 2-98)		

Specificity

The mouse monoclonal antibody DDIT-03 recognizes DDIT4L antigen, which belongs to stress-induced proteins involved in mediation of cell death.

Application

The reagent is designed for flow cytometry analysis. Working concentrations should be determined by the investigator.

Other usages may be determined from the scientific literature.

Storage Buffer

The reagent is provided in stabilizing phosphate buffered saline (PBS) solution, pH ≈7.4, containing 0.09% (w/v) sodium azide.

Storage and Stability

Storage	Avoid prolonged exposure to light. Store in the dark at 2-8°C. Do not freeze.
Stability	Do not use after expiration date stamped on vial label.

Background Information

DDIT4L (DNA-damage-inducible transcript 4-like), also known as REDD2 (regulated in development and DNA damage response 2) or RTP801L is a stress-inducted protein, which was shown to mediate monocyte cell death through a reduction in thioredoxin-1 expression, and is highly expressed in atherosclerotic lesions. Stimulation of DDIT4L expression in macrophages increases oxidized LDL-induced macrophage death.

Warnings

Non-Hazardous Statement: This is not considered hazardous by the criteria in 29 CFR 1910.1200 or the General Classification guideline for preparations of the EU.

Safety Data Sheet Statement: Important information regarding the safe handling, transport, and disposal of this product is contained in the Safety Data Sheet (SDS). SDS are available at http://www.sysmex-partec.com/services, or at https://us.sysmex-flowcytometry.com/ (U.S. customers only).

References

Cuaz-Pérolin C, Furman C, Larigauderie G, Legedz L, Lasselin C, Copin C, Jaye M, Searfoss G, Yu KT, Duverger N, Negre-Salvayre A, Fruchart JC, Rouis M: REDD2 gene is upregulated by modified LDL or hypoxia and mediates human macrophage cell death. Arterioscler Thromb Vasc Biol. 2004 Oct; 24(10):1830-5. < PMID: 15308555 >

- Corradetti MN, Inoki K, Guan KL: The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. J Biol Chem. 2005 Mar 18; 280(11):9769-72.
 PMID: 15632201 >
- Imen JS, Billiet L, Cuaz-Pérolin C, Michaud N, Rouis M: The regulated in development and DNA damage response 2 (REDD2) gene mediates human monocyte cell death through a reduction in thioredoxin-1 expression. Free Radic Biol Med. 2009 May 15; 46(10):1404-10. < PMID: 19268525 >

Symbols

REF	Reference number	Σ	Contains sufficient for <n> tests</n>
RUO	For research use only	1	Temperature limit
LOT	Batch code	类	Keep away from sunlight
	Manufacturer	[]i	Consult accompanying documents
	Use-by date	UDI	Unique device identifier